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The Bak, Tang, and Wiesenfeld cellular automaton is simulated in 1, 2, 3, 4, and 
5 dimensions. We define a (new) set of scaling exponents by introducing the 
concept of conditional expectation values. Scaling relations are derived and 
checked numerically and the critical dimension is discussed. We address the 
problem of the mass dimension of the avalanches and find that the avalanches 
are noncompact for dimensions larger than 2. The scaling of the power 
spectrum derives from the assumption that the instantaneous dissipation rate of 
the individual avalanches obeys a simple scaling relation. Primarily, the results 
of our work show that the flow of sand down the slope does not have a 1If 
power spectrum in any dimension, although the model does show clear critical 
behavior with scaling exponents depending on the dimension. The power 
spectrum behaves as 1/f 2 in all the dimensions considered. 

KEY WORDS: Self-organized critical behavior; sandpiles; scaling relations; 
power spectra. 

1. I N T R O D U C T I O N  

It has been a long-s tanding puzzle why 1I f  power spectra are seen in a 
variety of physical systems. (1) Also, the occurrence of spatial fractal 
structures has been realized as an empirical fact in many  different 
systems, (2) a l though a proper  unders tand ing  of the physical origin is still 
lacking. In  a recent paper  by Bak, Tang,  and  Wiesenfeld (BTW), (3) it was 
suggested that  the frequent occurrence of 1I f  noise and  fractal structures is 
the generic temporal  and spatial characteristic of a dynamical  critical state 
into which dynamical  systems with many  spatial degrees of freedom evolve 
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naturally. Unlike phase transitions in an equilibrium system, a driven 
dissipative dynamical many-body system reaches the critical state without 
the need to fine tune the system parameters, i.e., the critical state studied 
by BTW is an attractor of the dynamics. Therefore, the critical state is 
usually described as being self-organized, and the phenomena of self- 
organized criticality (SOC) may very well provide a connection between 
the occurrence of 1If noise and fractal structures, as well as being the 
physical origin of these two intriguing phenomena. 

This fascinating idea has initiated much work on the critical behavior 
of driven dissipative dynamical many-body systems: (a) general aspects of 
8OC(4 23) (b) scaling and critical exponents, (24 33~ (c) SOC applied to 
earthquakes, (34-39) and (d) experimental findings. (4~ 45j 

In order to visualize the basic idea of self-organized criticality, imagine 
a sunny day at the beach and a square table. Having noting better to do, 
we begin sprinkling grains of sand on the table, one grain at a time. We 
drop the grain on a randomly chosen place on the table and repeat the act 
when all motion has terminated. In the beginning the grains just fall down 
on the table in no particular patern. But, subsequently, while continuing to 
add new grains of sand, we notice the formation of small local avalanches. 
It is the mechanism of the local avalanches to decrease the local slopes 
whenever they become to steep. Perturbing the system, the small sandpiles, 
provoked by avalanches, create still greater sandpiles and, eventually, we 
end up with only one big sandpile. At some point (the transient time) this 
pile ceases to grow. The (global) average slope has reached a steady state 
corresponding to the angle of repose which the sandpile cannot exceed no 
matter how long we carry on adding sand: The pile has reached a statisti- 
cally stationary state, and additional grains of sand will ultimately fall off 
the pile. 

Likewise, we notice the unpredictability concerning the size of the 
avalanches, although they are clearly necessary in order to relax the 
sandpile. Even though the sandpile is driven to the stationary state, we still 
observe a variation of the local slopes (state variables) of the sandpile. But 
the local slopes of the pile cannot exceed a specific critical value without a 
grain of sand tumbling down. When the local slope equals the critical value, 
it is called a minimally stable site. An avalanche is triggered the moment 
we add a grain of sand which causes the local slope to exceed the critical 
value. This will inevitably happen if our grain of sand provokes a positive 
change of a minimally stable site. Roughly speaking, an avalanche sweeps 
the minimally stable sites that are spatially connected. The variation of the 
local slopes makes it impossible to predict what is going to happen when 
we add a new particle of sand. Either it triggers a global avalanche, or the 
perturbation only results in small local rearrangements, and, occasionally, 
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the additional grain of sand just rests where it falls; no avalanche is 
produced. 

In order to examine the phenomenon of self-organized criticality, 
BTW (3~ introduced a cellular automaton. A cellular automaton involves 
discrete space coordinates and discrete time steps. Furthermore, the 
physical quantities that are connected with the lattice sites only take on a 
finite set of discrete values. The state of the cellular automaton is 
completely specified by the values of the physical variables on each site. 
The dynamical rules for the physical variables determine the evolution of 
the model. The dynamical rules in the BTW model, at least intuitively, 
resemble the dynamics of a sandpile: A signal is transmitted from a local 
site to its nearest neighbors when a dynamical integer variable exceeds a 
threshold value. 

By simulating this model, BTW showed that the system does indeed 
drive itself into a statistically stationary state, characterized by distribu- 
tions of avalanche lifetimes and avalanche sizes which exhibit power law 
behavior. Hence, the system evolves into a stationary state without any 
characteristic time or length scales and is in this sense critical. The generic 
universality of the model stems from the very simple nonlinear diffusion 
equation governing the dynamics of the system. 

We intend to discuss in detail the different versions of the BTW 
sandpile cellular automaton model. In Section 2, we introduce the model 
and describe the different excitation mechanisms and boundary conditions 
considered in our simulations. In Section 3, we define scaling exponents for 
both probability densities and conditional expectation value. The various 
scaling exponents are connected by means of scaling relations. Section 4 
includes a derivation of the scaling properties for the power spectrum from 
a scaling annsatz of the dissipation rate of the individual avalanches. In 
Section 5 we summarize the results of computer simulations in dimensions 
1-5, and, finally, the scaling relations are discussed. 

Initially, the idea was to explain the mechanism behind 1If noise and 
fractal structures, but the BTW model does not contain a 1If power 
spectrum for the flow of sand down the slope. The model seems to contain 
a 1If  2 power spectrum (~8) irrespective of the dimension, at least in the case 
of dimensions 1-5. It is not yet settled, to what extent the spatial properties 
are characterized by fractals. We find that the avalanches are noncompact 
in dimensions higher than 2. It has been suggested (26'29~ that the critical 
dimension of (one version of) the model is 4. Some of the measured 
exponents seem to change from 4 to 5 dimensions, indicating a critical 
dimension larger than 4. 
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2. DEFINIT ION OF THE SANDPILE  CELLULAR A U T O M A T A  

The model is a cellular automaton defined on a d-dimensional cubic 
lattice of linear size N: For a given set of canonical basis vectors {ei}, 
i =  1,..., d, wed define a d-dimensional cubic lattice ~ e  of linear size N as 
the collection of points 

d 

r =  ~ rie i (1) 
i=1 

where the ith coordinate ri is an integer restricted to the interval between 
0 and N. To each lattice site r s ~ d  we assign an integer z(r) which is to 
represent a discrete version of an appropriate dynamical variable on site r 
of a spatially extended dynamical system. 

A point in phase space of the d-dimensional dynamical system is 
completely specified by the total set of dynamical variables {z(r)}, r e 5 ~ 
i.e., a trajectory in phase space corresponds to a particular evolution of the 
dynamical system. 

The dynamical rules (the perturbation mechanism and the relaxation 
rules) of the d-dimensional model have been motivated by the following 
heuristic considerations on the two-dimensional version of the model(~~ 
We think of sand particles as positioned on the bonds between the lattice 
sites r e 5 oz. We define a scalar z(i, j) as the average local slope on site (i, j) 
by z(i, j )= hi + h2-  h3-h4 ,  where hk denotes the height of the column of 
sand on the kth  bond at site (i, j) (see Fig. 1). 

N 

h3 
- -* - -  * *hi{h4 

/ 

J 
| 

h2 

0 0 1 N 

Fig. 1. Two-dimensional lattice of linear size N. The values of h k represent the heights of the 
columns of sand on the bonds connecting site (i, j )  to its neighbors. The meaning of the 
asterisks is explained in the text. Note that there is no one-to-one correspondence between the 
heights and the slopes for dimensions above one. 
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We examine two different perturbation mechanisms. First, bearing in 
mind the heuristic sandpile picture, we add two grains of sand locally on 
bond 1 and 2 at site r ~ y2 .  With regard to the local slope, this results 
in a conservative perturbation mechanism which, when generalized to a 
d-dimensional system, takes the form 

z(r) -~ z(r) + d 
(2) 

z ( r -  ei) ~ z(r - ei) - 1 for i = 1 ..... d 

Second, we consider the nonconservative perturbation mechanism 

z(r) ~ z(r) -t- 1 (3) 

which, in the sandpile picture, corresponds to a nonlocal change of the 
height of the columns, for instance, by adding one grain of sand to all 
the columns marked by an asterisk in Fig. 1. 

Whenever the local slope exceeds a certain critical slope z,. sand 
tumbles from the higher to the lower columns. This causes two grains of 
sand to tumble from the columns on bond 1 and 2 to the columns on bond 
3 and 4. The corresponding changes in the z values will be given according 
to the following relaxation algorithm: 

If z(r) > zc, then z(r)--*z(r)-2d 

z(r 4- ei) -+ z(r ___ et) + 1 for i = 1,..., d (4) 

If several sites r ~ 2~ 'a are unstable, z(r) > z,, the relaxations will take place 
simultaneously. 

Since the lattice y d  is finite, we have to define the boundary 
conditions. We examine two different types of boundary conditions. First, 
we allow sand to leave the system over the two edges by imposing open 
boundary conditions, i.e., the algorithm in Eq. (4) is changed to 

z(r) --+ z(r) - 2d+  (number of i with r i = N) 

z(r + ei) --* z(r + ei) + 1 if r~ r N 

z ( r - e i ) ~ z ( r - e i ) + l  for i = l  ..... d 

while 

z(r) = 0 if there exists r j = 0  (5) 

Second, we prevent sand from leaving the system by imposing closed 
boundary conditions, i.e., 

z ( r ) = 0  if there exists r : = 0  or r j=N (6) 
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If we have chosen a perturbation mechanism and a set of boundary condi- 
tions, then the algorithm of the temporal evolution of the sandpile cellular 
automaton follows: 

Algorithm 1. 

1. Specify an initial configuration {z(r)}. 

2. If any z ( r )> zc ,  then relax the configuration simultaneously by 
use of Eq. (4), taking into account the chosen boundary condi- 
tions until z(r)~< zc for all sites r. 

3. Choose a position r at random. Perturb the system according to 
the specified perturbation mechanism. Return to step 2. 

We define a unit time-step as one update of the whole latice. Let 
~ z ) ( r )  denote the z value averaged over sites r ES~ a. After a transient 
period, during which ( z )  (v) increases, a stationary state is reached: ~ z ) (z) 
fluctuates around an average value 

( z )  -- lim ( z ) ( r )  dz (7) 

In Fig. 2 we show examples of the time evolution of the average z 
values for the two different perturbation mechanisms in a two-dimensional 
system with open boundaries. Both simulations have been started from an 
initial configuration with all the z values set equal to zero. We notice that 
the nonconservative perturbation mechanism produces a stationary critical 
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Fig. 2. The spatial averaged slope <z>(z) as a function of time for systems with open 
boundary conditions. (a) System driven by the nonconservative perturbation mechanism; see 
Eq. (3). (b) System driven by the conservative perturbation mechanism; see Eq, (2). 
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Fig. 3. The spatial averaged slope (z)(r) as function of time for a system with closed 
boundary conditions driven by the conservative perturbation mechanism; see Eq. (2). 

state much faster than the conservative perturbation mechanism. The time 
variation of the z values has its origin in: (a) the nonconservative changes 
of the z values on the closed boundaries and (b) the nonconservative 
perturbation mechanism. In a situation with closed boundary conditions 
and conservative perturbation mechanism the system never reaches a 
stationary state (see Fig. 3). This is an artifact of using z > zc rather than 
the more physical condition jzl >zc  as the threshold criterion. In a 
situation where only z > z c trigers off a relaxation, the average slope 
decreases without limit due to the closed boundary conditions. On the 
other hand, the nonconservative perturbation mechanism combined with 
closed boundary conditions produces a stationary state. In such a case 
z(r) never becomes negative when z,.=2d-1 is used. The results are 
independent of the specific value of zc. 

3. S C A L I N G  E X P O N E N T S  

For  the purpose of giving a precise definition of the scaling exponents 
we must provide a concise definition of the statistical properties of the 
sandpile automata  in terms of an ensemble. First we concentrate on a 
member  of the ensemble labeled by i. Introduce an indicator function of 
unstable sites at time v on the lattice corresponding to the ith member 

Z(r ,  r) = $1 if z(r) > zc 
(S) 

otherwise 
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We define the instantaneous dissipation rate of an avalanche c~ in the ith 
member of the ensemble by 

f~,(~) = ~, f,.(r, ~) (9) 
r 

where the summation is over all lattice sites r in system number i. In other 
words, we assign to each avalanche (outcome) a function of time, whose 
value at time z equals the total number of relaxations at that instant. 
The family of all such functions {f~,(z)} defines a stochastic process X(z) 
(see Fig. 4). 

Next, we introduce a probability density on the set {f~,(z)}. Given a 
particular dissipation rate f~(z), we define an indicator function by 

,EJ.,I ll-J' y.,i l:J.I l 
(10) [0 otherwise 

f~ l 

f~i (I) 

t: 

fro- 1('~)~/~ 
% 

Fig. 4. Three realizations f~,(z) of the stochastic process X(z). 
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The considered ensemble defines the probabil i ty for producing an 
avalanche with a temporal  character izat ion f~(r)  by 

27=, s[f~,(~)] 
P [ X ( r )  = f ~ ( r ) ]  = lira (11) 

n ---~ o o  n 

The total dissipation (or size) of an avalanche of type f~(z) is defined as 

S s = f~(v) dr (12) 

and the lifetime of the avalanche started at time r = 0 is 

t = max{z I f~(r)  > 0} (13) 

while we define the spatial linear size of the avalanche as the maximum 
distance to a perimeter  point  from the initial per turbat ion  lattice point  r0" 

I = max{dt  d = dist(r, r0): r is within the avalanche (14) 

The probabil i ty densities of the corresponding stochastic variables S, 
T, and L are given by 

P ( T =  t) = ~ FIX( t )  = f~(t)I max{r  I f~(~) > 0} = t] (15) 

P(L = l) = ~ P[X( t )  = f~(t) I 

max {d id  = dist(r, ro)" r is within the avalanche } = l ]  

i.e., the summations  are restricted to avalanches of size s, lifetime t, and 
linear size l, respectively. 

Finally, we introduce 3 the scaling exponents r, ~, and 2 by means of 

p ( S =  s ) ~  s ~-~ 

P ( T = t ) , . ~ t  ~-~ (16) 

p ( L = l ) ~ l  I ;. 

3 The notat ion for the scaling exponents is that used in the literature, and should be 
distinguished from the time variable r and the avalanche index ~. 
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and the following set of conditional expectation values with corresponding 
exponents: 

EESI T = t ]  ~ F  1 

E [ T I  S = s] ~ s t/~' 

E E S I L = I ]  ~ l  ~2 (17) 

E [ L  I S = s] ~ s 1/~2 

E [ T I L = I ]  ~173  

E l L  I r = t] ~ t 1/~3 

where, for example, 

s  T =  t ]  = F, se(S = s l r =  t) (18) 
s 

The reciprocal relationship between the exponents shown in Eq. (17) 
is a necessary condition if we assume the existence of transformations that 
relate the stochastic variable S with T, S with L, and T with L (see Fig. 5). 
In a strictly mathematical sense such transformations cannot exist since, as 
an example, there will always be more than one possible avalanche size s 
for a given lifetime t. However, we find that the reciprocal relationships 
are fulfilled quite accurately (see Section5), which indicates that the 
conditional densities, e.g., P ( S  = s i T =  t), have a narrow support around 
their average value. 

In order to obtain scaling relations between the exponents, we bear in 
mind the general identity involving three stochastic variables X, Y, and Z: 

f E [ X I Y = y ] P ( Y = y )  d y = f E [ X I Z = z ] P ( Z = z ) d z  (19) 

I 

T=S'q 
S " T 

1 & 
L S 

L 

Fig. 5. Transformation relation connecting the stochastic variables S, T, and L. 
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following from the fact that both integrals produce the expectation value of 
X, E(X) .  For {X, Y, Z} = {S, T, L} we substitute Eqs. (16) and (17) into 
Eq. (19) and obtain 

I dt FIt I ~= ~ dl l'/2l 1 ~ (20) 
d 

in the case of X = S ,  Y= T, and Z = L .  We assume a transformation 
consistent with the scaling ansatz in Eq. (17) 

L = T 1/73 (21) 

This leads to 

2 - 7 2 - 2  
= 2 + Yl + (22) 

73 

In the case of X = T, Y = S, and Z = L, we obtain in a similar way 

r = 2 + - - +  (23) 

and, finally, X = L, Y = S, and Z = T produce the identity 

2 (24) 
72 7173 

Substituting Eq. (22) into Eq. (24) and comparing with Eq. (23), we obtain 

~2 = 7 1 7 3  (25) 

in accordance with the assumed relationships between S, T, and L as 
outlined in Fig. 5. Introducing Eq. (25) in Eqs. (22) and (23), we obtain the 
simple expressions 

2 - 2  
o ~ = 2 + - -  

73 
(26) 

2 - 2  
r = 2 + - -  

~2 

4. P O W E R  S P E C T R U M  

In this section, we analyze the response of the sandpile automaton (the 
flow of sand down the slope of the sandpile) due to white-noise perturba- 
tions (adding sand randomly in space and time) in the frequency domain. 
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We consider a system in the stationary state and perturb it by adding 
sand, on randomly chosen lattice sites, with a constant probability v per 
time. For a sufficiently large system we can neglect the interference between 
different avalanches. Hence, the total dissipation rate j(r)  at a given time 
r equals the linear superposition of the individual dissipation rates 
produced by the individual avalanches operating at time t (see Fig. 6). To 
produce a mathematical expression for the total dissipation rate, we intro- 
duce a family of discrete (indicator) functions {p~(t)}~. With a fixed ~ the 
function p~(r) is equal to unity if an avalanche of type c~ has been triggered 
off in the time segment r, t + &, zero otherwise. If we divide the time axis 
into intervals of length 5, then 

t/~ 
j(t)=~ ~ f~(t-n6) p~(n6) 

c~ n ~  c o  

=~ ~ f~(t-n6)p~(n5) (27) 
c~ n =  oo 

where the second equality in Eq. (27) is a consequence of using the conven- 
tion f~(t) = 0 when r < 0. A specific time evolution j ( t )  of a given system 
is completely characterized by the map (see Fig. 7) 

~, n~--~p~(nS) (28) 

We introduce an ensemble of critical systems where each ensemble 
member is perturbed by adding sand (on randomly chosen sites) with a 
constant probability rate v. Consequently (with fixed c~) this leads to a 
transformation of the function p~(n6) into a stochastic process P~(n5). 
Replacing p~(nS) with P~(nS) in Eq. (27), we turn j ( t )  into a stochastic 

l J (t) 

0r ]", 

o:/",J " 

I 
n'6 n 6 

f~.,(t-n'8) 

'r TIME 
- ' ~ - r f 8  

Fig. 6. Linear superpositlon of avalanches. 
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Fig. 7. Schematic representation of the map in Eq. (28). 

process J(r).  For  each realization j ( r )  of the stochastic process J(r)  we 
perform the Fourier transform (47'48) 

f 
oO 

j(~o) = j ( r ) e  - '~ dr (29) 
- - 0 : 3  

and the corresponding power spectrum is given by 

s j ( ~ )  = Ij(c0)l 2 (30) 

Sj(co) is a strongly fluctuating function of co, since we are dealing with a 
random variable with respect to the random process J(z). Performing the 
ensemble average 

s j (o) )  = E [ s / c o ) ]  (31) 

we obtain a smooth function of the frequency f = oJ/27r. 
The method outlined above, used to establish the power spectrum, is 

suitable when we want to measure the power spectrum directly. However, 
for analytical analysis, we find that the concept of an autocorrelation 
function is more convenient. It turns out that the power spectrum of the 
stochastic process J(r)  can be expressed in terms of a weighted average of 
the power spectra of individual f~(r) signals (see Appendix A): 

Sj (~ )  = v Z P(~) If~(~)l 2 (32) 
c~ 

P(e) denotes the probability for an avalanche of type e to occur. From this 
expression we derived the scaling properties of Sj(co). First, we assume that 
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it is possible to characterize the individual avalanche signals by the size 
and lifetime, i.e., e = (s, t). Furthermore, the identity 

suggests the scaling relation (see Fig. 8) 

L,,(~)=-tL ,, (33) 

Considering the Fourier transform, the scaling relation in the time domain 
is transformed into a scaling relation in the frequency domain: 

f~.,(o~)=sfl,l(cot) (34) 

Substituting Eq. (34) into Eq. (32), we obtain the fundamental equation for 
the analysis of the dynamical aspects of the sandpile 

sA~0)  = ,, T__, Y', t f l , , ( o t ) t ~ f ( s  = s ,  : r =  t) 
s l 

(35) 

A fs,t(1:) 

s 
T 

l f s , t ( ' ~ )  

! 1  

t 

Fig. 8. Two examples of elementary avalanche signals scaled according to Eq. (33). 
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Three different frequency regions have to be considered: A low-, an inter- 
mediate-, and a high-frequency region. For co--, 0 the power spectrum 
becomes white, since the linear superimposed signal J(r) cannot contain 
correlations for times longer than the longest possible lifetime t . . . .  of an 
avalanche, i.e., S(o)) --, const when co < 1/G,x.  In the high-frequency region, 
Sj(r ~ (J~. The value of the exponent e~  depends on the specific form 
of f~,l(z). The behavior of Sj(co) for intermediate frequencies is determined 
by P ( S  = s, T =  t). We introduce a weighted lifetime distribution A(t)  by 

A(t)=ys2P(S=s, T= t)= El-S21 r = t ]  P(T= t) (36) 

Assuming that A(t )  exhibits a scaling behavior in an interval 0 <  t~ ~< 
t K~ t2 < oo, 

A ( t ) ~ t  ~ (37) 

and is negligible outside, we have 

SJ( (D)~-~' 2 A(I)Ir 09t)12 
t ~ [ q,tz] 

{;2 ;1 } ~vco -~- x t~p~,,(t)12 dt + Ul f l ,  l(t)12 dt 
It 

(38) 

An analysis of the scaling behavior of the two different terms in this 
equation is given in Appendix B, and leads to the following result: 

1, 

Sj(co)= co -" 1, 
0 <  - # - 1  

~ < - #  - 1 < 0 

- # - 1  <~oo 

(39) 

For  f~,~(r) equal to a square box function (see Fig. 8), c~ = - 2 ,  whereas, 
in the case of a triangular shape of fl,~(r), the exponent c~c~ = - 4 .  In 
Appendix B we prove that ego ~< -2 .  Thus, the only way to obtain a 1If 
power spectrum is by having a weighted lifetime distribution with an 
exponent # = 0, irrespective of the specific form of the superposed signals ! 

From Eq. (36) we can derive a scaling relation for the exponent # by 
use of the assumed transformation S = T ~1. From Eqs. (36), (25), and (26) 
we obtain 

~ =  ( 4 - r ) 7 1 -  1 (40) 

822/63/3-4-16 
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5. SIMULATION RESULTS 

5.1. Scaling Exponents 

In order to measure the scaling exponents defined in Eqs. (16) and 
(17) we have made simulations on systems of linear size N=40  in two 
dimensions, N = 20 in three and four dimensions, and N = 15 in five dimen- 
sions. The simulations are done as follows. Starting from an empty system, 
z(r)=0 for all r, we perform the time evolution procedure described in 
Algorithm 1 until the stationary state is reached. We measure the joint 
probability density P(S=s ,  T= t, L =  l) by consecutively perturbing the 
system and probe the response until we have obtained sufficient statistics 
to construct the probability densities and conditional expectation values 
from Eqs. (15) and (18). It is worthwhile noticing that we replace the 
above discussed ensemble average by an average over repeatedly executed 
probings of the same system. This is permitted since the stationary state is 
independent of the detailed history of the transient period and, moreover, 
because the perturbation does not drive the system out of the stationary 
state. In other words, we assume that the system is ergodic. 

A set of generated densities for the nonconservative perturbation 
algorithm defined in Eq. (3) combined with the closed boundary conditions 
given by Eq. (6) is shown in Fig. 9. These are the directly measured data, 
i.e., no coarse graining has been done, the used bin size is equal to one. 
From these plots we infer the scaling exponents and list them in Table I. 
Exponents for the nonconservative perturbation mechanism defined in 
Eq. (3) combined with the open bondary conditions are given in Table II. 
Finally, Table III contains the results for the conservative perturbation 
mechanism defined by Eq. (2) combined with the open boundary condi- 
tions given in Eq. (5). We believe that the exponents are determined within 
an uncertainty of about __0.1. 

The exponent ~ is measured from the slope of the graph in Fig. 9a. The 
columns labeled by 71, 72, and 73 are measured from the slope of the linear 
part of the graphs in Figs. 9b, 9d, and 9f, respectively. The numbers in the 
columns labeled by 1/71, 1/72, and 1/73 a r e  obtained from the slopes of 
Figs. 9c, 9e, and 9g, respectively. By comparing the measured value of 1/7i 
(with i=  1, 2, and 3) to the measured 7i, we conclude that the assumption 
of pairwise reciprocal relationships between the scaling exponents in 
Eq. (17) is fulfilled within the numerical accuracy. 

In order to test the scaling relation 72 =7173 in Eq. (25) obtained from 
the assumed transformation relationship (see Fig. 5), we list in the column 
labeled by ]2173 the product of the measured exponents in columns 71 and 
~3- Furthermore, we have written the product of the measured exponents 
in columns 1/71 and 1/73 in the column labeled by 1/7173 . This number is 
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Fig. 9. Simulation results for systems (in two, three, four, and five dimensions) with closed 
boundary conditions combined with the nonconservative perturbation mechanism. (a) 
Avalanche sizes. The slope determines the exponent z. (b) The conditional expectation value 
of the avalanche sizes for a given lifetime. The slope determines the exponent 71. (c) The con- 
ditional expectation value of the avalanche lifetimes for given size. The slope determines the 
exponent 1/71. (d) The conditional expectation value of the avalanche sizes for given linear 
size. The slope determines the exponent 72. (e) The conditional expectation value of the linear 
size of the avalanches for given total size. The slope determines the exponent 1/7 a. (f) The con- 
ditional expectation value of the avalanche lifetime for given linear size. The slope of the 
straight line determines the exponent ~ (g) The conditional expectation value of linear size 
for given lifetime. The slope determines the exponent 1/y 3. 



'M
 

0 

Lo
gI
O(
E(
S L-
I)
) 

0
 

~
 

b
O
 

O
q
 

0
 

m
l
 

0_
 

.~-
 

Lo
gI
O(
E(
TS
-s
))
 

0 
~ 

I~
 

0
-

 

o 

0 

O
J 

C
N
 

,m
 



2 

0 

CO 

II 
tO 
._] 

Ld 

0 
Q-) 
_S o 

3 

0 

e 

I I 

I 2 3 

Log10(s) 

0 

2 

L~ 

O 
O~ 1 
S 

! 

0 I 

LOglO(O 
Fig. 9. (Continued) 

Sandpile Cellular Automata 671 



672 Christensen et  aL 

Ld 

0 ,l---- 
Oh 
0 
_J 

f ~  

I I 

0 I 2 

Log10(f) 
5 

Fig. 9. (Continued) 

to be compared  with the values in column 1/72. We find that this scaling 
relation is well satisfied. 

The exponent  2 is difficult to obtains from the slope of Fig. 10a, 
However,  in the case of the nonconservative per turbat ion mechanism and 
the closed boundary  conditions we make a consistency check by use of the 
scaling relation in Eq. (26). This is done by inserting the measured values 
(from Table I) in Eq. (26) to obtain a prediction for the value )o. We obtain 
2 = 2 in two dimensions, ,~ = 3 for three dimensions, 2 = 3.55 in four dimen- 
sions, and 2 = 3.94 in five dimensions. The corresponding slopes 1 -  2 are 
represented by straight lines in Fig. 10a. We note that  these findings are 
consistent with the numerical measurements.  Next, we use the calculated 
values of 2 together with the measured value of Y3 in Table I to estimate the 

Table l .  Simulat ion Results for Systems (in Two, Three, Four, and 
Five Dimensions) w i th  Closed Boundary Conditions Combined 

wi th  the Nonconservative Perturbation Mechanism 

Dimension z 71 1/71 72 1/72 Y3 1/73 '/173 1/7173 

2 2.00 1.55 0.64 2.08 0.49 1.34 0.75 2.08 0.48 
3 2.37 1.70 0.59 2.72 0.37 1.61 0.62 2.74 0.37 
4 2.50 1.79 0.56 3.09 0.33 1.80 0,55 3.22 0.31 
5 2.58 1.80 0.56 3.34 0.30 1.84 0,53 3.31 0.30 
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Table II. Simulat ion Results for Systems (in Two, Three, and 
Four Dimensions) w i th  Open Boundary Conditions Combined wi th  the 

Nonconservative Perturbation Mechanism 

Dimension T Yl 1/?1 ?2 1/?2 ?3 1/73 7173 1/?173 

2 2.00 1.55 0.64 2.13 0.49 1.35 0.75 2.09 0.48 
3 2.31 1.71 0.59 2.76 0.37 1.63 0.62 2.79 0.37 
4 2.46 1.77 0.56 3.09 0.33 1.81 0.55 3.20 0.31 

exponent e from the scaling relation in Eq. (26). The predicted values yield 
corresponding slopes for the double logarithmic plots of P(T= t) versus t 
in Fig. 10b, which are drawn as straight lines in this figure. Also in this case 
we obtain good agreement between the predicted value for the exponent 
and the measured one. 

In the case of the nonconservative perturbation mechanism combined 
with the closed boundary conditions, Zhang (33) has discussed the exponents 
)v and 72 and derived a scaling relation to determine the exponent T. He 
used a mean-field-type argument to conclude that the exponent 2 in 
Eq. (16) for the density of the spatial linear size equals the Euclidean 
dimension: 2 = d .  As mentioned above, we find 2 = d  except for d > 3 .  
Zhang assumes that the avalanches are compact, i.e., the the exponent 72 
in Eq. (17) describing the connection between the linear extension of an 
avalanche and the total size is equal to the Euclidean dimension: 72 = d. As 
is seen in Table I, our simulations do not appear to be consistent with the 
equality 72 = d in dimensions above 2. Although we find some discrepancy 
between our simulations and the values used by Zhang for the exponents 
2 and 72, our simulations seem to be consistent with the scaling expression 
derived by Zhang for the exponent r, 

d - 2  
z = 2 + - -  (41) 

d 

Table III. Simulation Results for Systems (in One, Two, Three, and 
Four Dimensions) w i th  Open Boundary Conditions Combined wi th  the 

Conservative Perturbation Mechanism 

Dimension r 71 1/71 72 1/72 ?3 1/73 7173 1/71?3 

1 1 1 1 l 1 1 1 1 1 
2 2.21 1.45 0.66 1.97 0.50 1.34 0.75 1.94 0.50 
3 2.47 1.64 0.60 2.65 0.37 1.61 0.62 2.64 0.37 
4 2.61 1.68 0.58 3.09 0.32 1.85 0.54 3.11 0.31 
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Fig. 10. Simulation results for systems with closed boundary conditions combined with the 
nonconservative perturbation mechanism. (a) The probability densities for the spatial linear 
size. (b) The probability densities for the lifetimes. Different curves refer to different spatial 
dimensions. The slopes of the curves become steeper as the dimension is increased from 2 
to 5. See the text for an explanation of the solid straight lines. 
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A direct comparison with our prediction in Eq. (26) is consistent within the 
numerical accuracy. 

Finally, we wish to comment on a possible critical dimension of the 
sandpile cellular automaton. It has been suggested that the critical dimen- 
sion is equal to four. (24'29) We find that the scaling exponents change when 
going from dimension four to five. This indicates that the critical 
dimension, if any, is larger than four. However, numerical limitations 
prevent us from making any definite statement on this point. 

5.2. Power  Spectrum 

In order to measure numerically the power spectrum of the stochastic 
process J(Q, we make use of Eq. (31). First we generate one realization j(-c) 
of duration T containing R avalanches in the following way (see Fig. 6). 

Algor i thm 2 

1. Set j ( ~ ) = 0  for all ~. 

2. Perturb the system on a randomly chosen position until an 
avalanche is activated. 

3. Measure the dissipation rate f~(r) of the avalanche. 

4. Choose a starting time % at random and set j (Q = j ( Q  +f~(~ - %). 

5. Go to 2 until R avalanches have been generated. 

Using this procedure, we create a linearly superimposed signal with 
perturbation rate v=R/T .  The assumption of no interference between 
different avalanches was essential for the derivation of Eq. (35). Time 
sequencies j(v) generated according to Algorithm 2 will, of course, fulfil this 
requirement no matter how high a rate v we choose. If, however, we 
generate j(r)  as the directly measured dissipation rate in a finite lattice con- 
tinuously perturbed with rate v, we will have to make v small to be able 
to neglect interference between simultaneously operating avalanches. 

In practice we found in ref. 18 that even for small systems and small 
finite driving rate v the numerically measured power spectrum of the 
dissipation signal j(~) produced by a continuous perturbation and the one 
produced using Algorithm 2 could not be distinguished. 

Since the resulting representation j(v) of the ensemble is a discrete 
function of time, we use Fourier series. We define the Fourier transform of 
a signal j(r)  of duration T as 

1 T--1 
j ( c o k ) = ~  ~ j ( r ) e  -i~~ 

d T  "c=O 
(42) 



676 Christensen et  al. 

where the frequency e)k = 2~zk/T for k = 0, 1 ..... T -  1. The square of the 
absolute value of Eq. (42) is the corresponding power spectrum of one 
specific realization of J(r). This power spectrum fluctuates strongly. We 
make an average over many different realizations Ji(r) in order to deter- 
mined the power spectrum Ss(cok) of the stochastic process J(~) [cf. 
Eq. (31)]: 

1 M 
sj(~,~)---~,~, Iji(~,~)l ~ (43) 

Generated power spectra are shown in Fig. 11 for a system with closed 
boundary conditions driven by the nonconservative perturbation 
mechanism. The forms of spectra for the other versions of the model 
considered here are identical. We find that all power spectra behave as 1/o 2 
irrespective of dimension, choice of perturbation mechanism, and boundary 
conditions. 

The power spectrum obtained by direct numerical measurement 
should be compared with the measure weighted lifetime distribution 
function A. We focus on systems driven by the nonconservative perturba- 
tion mechanism combined with the closed boundary conditions. We can 
calculate the exponent # from Eq. (40) by inserting the measured values for 

and 71 listed in Table I. We find # = 2.l, 1.77, 1.69, 1.56 in dimensions 2, 

_ 

4 

U3 
3 O 

(D3 
o, 2 

1 

0 ~ I I 
- 4  - 3  - 2  -1  0 

hOglO(f) 
Fig. ll. Power spectra for the total dissipation rate obtained by linear superposition of 
avalanche signals. The system has closed boundary conditions and is driven by the non- 
conservative perturbation mechanism. The different curves refer to different dimensions. The 
dimension decreases from four to two going from bottom to top. 
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Fig. 12. The weighted lifetime distribution defined in Eq. (36). The results shown are for the 
closed boundary conditions and the nonconservative perturbation mechanism. The different 
curves refer to different dimensions. The curves become less steep with increasing dimension. 
The slopes of the straight lines are calculated from Eq. (40) by use of the measured z and 71 
listed in Table I. 

3, 4, and 5, respectively. As seen in Fig. 12, the A(t)  function appears  to 
satisfy this scaling behavior  approximate ly .  The solid lines indicate these 
slopes. The avalanche signals are assumed to be self-similar in a statistical 
sense. By inspection of the actual  form of the avalanche signals f i r )  this 
hypothesis  appears  to be fulfilled (see also ref. 19). Moreover ,  the f~(r)  
signals are well app rox ima ted  by box signals of dura t ion  equal to the 
lifetime t of  the avalanche  e and height s/t, where s is the total  dissipation 
of the avalanche ~. It  follows that  the fundamenta l  signal f l ,  l(z) is a 
s quare  box function with e ~  = - 2  and f rom Eq. (39) we conclude that  
Sj(co) ~ co 2. This conclusion was reached for two-dimensional  systems in 
ref. 18 and also in ref. 19. It  is in contradic t ion to the original claim by Bak 
et al. (3) Although the different sandpile cellular a u t o m a t a  exhibit self- 
organized critical behavior  in the sense that  distr ibution functions exhibit 
power  law behavior ,  the models  do not  contain the expected 1If power  
spectrum. However ,  that  self-organized critical models  can contain 1If 
power  spectra has recently been demons t ra ted  in a lattice gas model.  (17) 

6. C O N C L U S I O N  

We have studied avalanches  in different versions of the sandpile 
cellular au tomaton .  Scaling exponents  were measured  numerical ly  and 



678 Christensen et  al. 

analytically derived scaling relations tested. We found that three 
properties--the lifetime, the total dissipation, and the spatial linear 
size--are all connected through scaling relations. The connection between 
the distribution of weighted lifetimes and the corresponding power 
spectrum for linearly superimposed avalanches was derived. It was shown 
that the weighted lifetime distribution must be independent of the 
avalanche lifetime in order to obtain a 1If power spectrum. Furthermore, 
we examined the temporal behavior of flow of sand down the slope. The 
power spectra of the flow were found to behave as 1If 2 in all dimensions 
from 1 to 5. 

A P P E N D I X  A 

To calculate the power spectrum of a stochastic process analytically it 
is most convenient to make use of the autocorrelation function. For a 
stochastic process which is stationary in the wide sense (see below) the 
power spectrum is determined according to the Wiener-Khinchine theorem 
as the Fourier transform of the autocorrelation function. 

The total dissipation rate j(r) at time r is given by [see Eq. (27)] 

j (v)=~,  ~ f~( t--nb)p~(n6) (A1) 

As explained in the text following Eq. (28), we introduce an ensemble of 
stationary systems and turn the total dissipation rate into a stochastic 
process 

J ( z ) = ~  ~ f~ ( t -nb )P~(n6)  (a2) 

where P~(nS) denotes the stochastic process associated with the concrete 
realizations ~, n ~ p~(n6) belonging to a representation of the ensemble. 

In order to determine the power spectrum of the stochastic process, we 
consider the autocorrelation function 

Tj(t,  l: + "Co) = E[J(t)  J(t + "Co) ] 

= Z ~ ~ Z L ( t  - n6 ) f~(t  + t o - n'5) E[P~(nS) P~(n'5)] 
a ~ 17 n'  

= Z Z f~(t - nS)f~(t  + t o - n6) E[ {P~(n6)}2J 
c( n 

+ ~ ~ ~ ~ . f~( t -nS)  f~(t  + r o - n ' )  E[P~(nS) P~(n'3)~ 
13v~.  n n ' ~ n  

(A3) 
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Since with fixed c~ and n the stochastic variable P~(ncS) has the range 0, 1 
we have (again with fixed c~ and n) P~(nO)P~(n6)=P~(nO). Hence, 
E[{P~(n6)} 2] =P(c~)vc~, where v is the rate with which avalanches are 
started. P(cQ denotes the probability for an avalanche of type c~ to occur. 
Because the avalanches are assumed to be independent we have 

E[P~(ncS) P'q(n'6~)] = E[P~(mS)] E[P/3(n'c~)] = P(c~) P(fi) v262 (A4) 

By use of these two equations we obtain 

+ J \  
c~ 

+ v2 ~ ~ P(c~) P(fl) f~(r) f/~(z') dr dr' (A5) 
f l  - -  - - o o  

We note that ~ j ( r ,  r + %) does not depend on r. Furthermore, the average 

( . c O  

E[J (v) ]  = v ~ ]o f~(r) P(~) dr (A6) 

is also independent of z. Such a stochastic process is said to be stationary' 
in a wide sense. 

Finally, we take the Fourier transform of the autocorrelation function. 
We observe that the second term in Eq. (A4) is a constant and therefore 
only contributes to Sj(6o = 0). Thus we obtain for finite frequencies 

i ~ f ~176 
sj(co) = v ~ P(~) L ( r )  

cO - - o o  

= v Z P ( ~ ) I s  

f~(r + ro)e . . . .  0 dro dr 

(A7) 

A P P E N D I X  B 

In this Appendix we give a detailed discusion of the scaling properties 
of the power spectrum. The fundamental equation regarding the power 
spectrum of linearly superimposed signals is 

sj(~o) = v ~ Y Ifl, i(~ot)12s2P(s = s, r =  t) (B1) 
S t 

To investigate the scaling behavior, we have to consider the term 

f2 Ill 1(~o012 L,~( -,o~,~ = z)e dr (B2) 
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more closely. We use Parseval's theorem 

- -  f l , l ( t )  at  ( ~ 3 )  27~ Ifl, l(cot)l 2 d(cot) = z 
- - c o  - - o o  

to obtain limits on the possible scaling behavior of fl,l(COt). Assume that 
the time signals have finite energy content, i.e., that the integral on the 
right-hand side of Eq. (B3) is finite. It follows for the limit of small 
argument, cot ~ 0, that 

If1, x(cot)l 2 ~ (cot) ~~ ~ C~o > - 1  (B4) 

and for large arguments cot--, oo 

I f l ,  l(cot)l  2 ~ ( c o t y  ~ ~ ~co < - 1  ( B 5 )  

These are the restrictions for the exponents originally obtained by van der 
Ziel. (49) Using the ideas from Halford, (s~ it is possible to make further 
restrictions on the exponents % and c~co. 

Making use of the continuity of the absolute value and Lebesque's 
convergence theorem, we find 

lim ]jr fco 
~ t ~ 0  " c o  

Hence, % = 0. 

2 

f~.,(z)dv = 1 (B6) 

It is not as trivial to put a restriction on the range of c~.  However, 
if the time signal fl ,  l(z) is reasonably well-behaved, the corresponding 
autocorrelation function 

Tl ' l ( t~ = r-~lim~ }-~1 f r  _ v f1,1(~) fl, l(t + %) dz (B7) 

is everywhere continuous and furthermore the first derivative with respect 
to t o is without singularities, i.e., everywhere finite. This requirement 
implies e~ ~< -2 .  The argument is as follows. 

The Wiener-Khinchine theorem expresses the power spectrum as the 
Fourier transform of the autocorrelation function 

fco 
Ifl, l(COt)12 = Tl, l(%)e-'~176 (B8) 

c o  

The inverse Fourier transform leads to 

1 ]fl, l(cot)t 2 COS(COgZo) d(COt) ~ l , l ( t o )  = (B9) 
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The derivative of the autocorrelation function is given by 

Assuming 

d ~ ) 1 , 1 ( * o )  

&o 
1 lf l ,  l (X)[2x sin(x%) dx  

7"C 

Ifl, l ( X ) 1 2 ~ K x  ~~ for x~<l 

I f ~ , ~ ( x ) r 2 ~ K x  ~~ for x~> 1 

we obtain for Co ~< 1 

(BIO) 

(Bll) 

- K  l 
d~g /1 .1 ( ' r o )  f x:~o+ 1 sin(xro) dx  

&o Jo 

+ x ~+1 sin(x%) dx+ x ~+1 sin(xzo) dx  (B12) 
'~1 1/zo 

For ro ~ 1 we can use sin(xro) ~ Xro in the first two integrals; in the third 
we substitute xr  o ~ x and find 

dgtl, 1(~o) 1 3) 
dro K {'c~ ( ~ +  3 -  ~ + 

+~.g~+2 (B13) 

from which we obtain that 

lim dg~l'l"z~ ~ o o ~ < - 2  (B14) 
r 0 ~ 0 d T  0 

We consider two examples. First assume f,,,(r) to be the square box 

;It if O < ~ < t  
fs, t(T) = otherwise 

(B15) 

We then have 

S ] - -  e - i~ot 

(B16) 

This equation illustrates Eq. (34). Furthermore, 

2 { 1 for 
Ifj,~(~ot)l ~ (cot) 2 for 

cot --* 0 
CO/' --~ oo  

(B17) 
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Thus, eo = 0 and ~ = -2 .  Second, let f~,,(r) be given by 

We then have 

~(4s / tZ)z  if 0 <'c < t/2 

f " ( z )  = ~(4s/ tZ)( t  -- z)  if t/2 < z < t 
(B18) 

4s  
f,.,(co) = ~ (2e-~~ e . , O ,  1) (B19) 

Uco)- 

This equation illustrates Eq. (34). Furthermore, 

1 for 
Ifl'~(cot)t2 ~ (cot) - 4  for 

c o t ~ 0  
(B20) 

cot ---~' O0 

Thus, % = 0 and c~o~ = -4 .  
The starting point for the discussion of the scaling behavior of the 

power spectrum in the intermediate regime 1/t2 ~ co < 1/tl  corresponding to 
Eq. (37) is Eq. (38), 

S j  ( co ) ,-~,-~ 1..) co - ~ - 1  tU l f l ,~ ( t )12d t+  t~'lfcl, t ( t ) i 2d t  (B21) 
t l  

Assume again Eq. (Bll) ;  then 

S j ( c o ) = v K c o _ ~ _ l I l - ( o ) t ~ ) ~ ' + ~ ~  1 - (o~t2)~'+~+ l 1 
# + ~ 0 +  1 #+~oo + 1 (B22) 

The scaling behavior in the region cot~ < 1 and cot2 >> 1 is determined by the 
sign of the exponents # + eo + 1 and /~ + c~ + 1. We have five different 
posibilities (see Fig. 13): 

1. # + c % + l < 0 a n d H + c ~ + l < 0 < : > c % < - # - l ~ S s ( c o ) ~ c o  ~~ 

2. / Z + ~ o + l > 0 a n d # + c % + l < 0 ~ * c % < - # - l < ~  0 
~ S~(co)~co ~-~. 

3. # + c % + l > O a n d # + ~ o o + l > O r  -#--I=:-'>Sj(CO)~co ~. 

4. # + c % +  1 = 0 ~  - # -  1 =c%~Sor(co)~co~~ 

5. # + ~oo + 1 = 0 .*> - # - -  1 ~ c ~  ~ S j S j ( c o )  ~ co ~ In(cot2). 

o 
, , ~ -la-1 

0~ O~ 0 

- - o  2 O ...... 
�9 ~ 1 

5 4 

Fig. 13. The five different scaling behaviors of the power spectrum. 
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